N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.
نویسندگان
چکیده
Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.
منابع مشابه
N-Acetylcysteine Compared to Metformin, Improves The Expression Profile of Growth Differentiation Factor-9 and Receptor Tyrosine Kinase c-Kit in The Oocytes of Patients with Polycystic Ovarian Syndrome
Objective Paracrine disruption of growth factors in women with polycystic ovarian syndrome results in production of low quality oocyte, especially following ovulation induction. The aim of this study was to investigate the effects of metformin (MET), N-acetylcysteine (NAC) and their combination on the hormonal levels and expression profile of GDF-9, BMP-15 and c-Kit, as hallmarks of oocyte qual...
متن کاملCharacterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice
BACKGROUND The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein ...
متن کاملTransient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations
The cornea is innervated by three main functional classes of sensory neurons: polymodal nociceptors, pure mechano-nociceptors and cold-sensing neurons. Here we explored transient receptor potential cation channel subfamily V member 1 (TRPV1) expression in guinea pig corneal sensory neurons, a widely used molecular marker of polymodal nociceptors. We used retrograde tracing to identify corneal a...
متن کاملVitrification Affects Nuclear Maturation and Gene Expression of Immature Human Oocytes
Background: Vitrification of oocytes is a fast-freezing technique, which may affect the quality of the human oocyte, and consequently affects the embryo development, pregnancy and birth. The aim of the current study was to investigate the consequence of in-vitro vitrification on maturation status of immature human oocytes, additionally, expression levels of stress, and apoptosis related genes. ...
متن کاملBDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development.
Neurotrophins have multiple functions during peripheral nervous system development such as controlling neuronal survival, target innervation and synaptogenesis. Neurotrophin specificity has been attributed to the selective expression of the Trk tyrosine kinase receptors in different neuronal subpopulations. However, despite overlapping expression of TrkB and TrkC in many sensory ganglia, brain-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience research
دوره 65 2 شماره
صفحات -
تاریخ انتشار 2009